Inspection
Inspection shows how the input image is processed for each module, where detected objects are displayed for each image, providing detailed information such as rectangle coordinates, ID, image size, confidence percentage, etc.
The Context (application variable), is displayed in JSON format for each module. The data will be available in Inspection after you activate a model for any module within the Flow.
Module-independent data
Image Dimension (Pixels)
{
"globalData": null,
"image": {
"type": "<numpy>",
"shape": [
837,
1305,
3
]
}
Anomaly Detector - JSON Data
Detected Rectangle Data - XY Coordinates, Dimension[px], Area[px], ID, Color, Class Name
"detectedRectangles": [
{
"x": 1086,
"y": 510,
"width": 3,
"height": 3,
"area": 2,
"id": 1603111484990003,
"classNames": [
{
"color": "#ff00ff",
"color_bgr": [
255,
0,
255
],
"id": 1603111688057,
"label": "Scratch"
}
....
Heatmap Data - Dimension, Color, ID & Class Name
"heatmaps": [
[
{
"type": "<numpy>",
"shape": [
768,
1024,
1
]
},
{
"color": "#ff0000",
"color_bgr": [
0,
0,
255
],
"id": 1,
"label": "Defect"
}
]
....
Classifier - JSON Data
Detected Rectangle Data - Class Names, ID & Confidence % (Accuracy)
Accuracy is represented as [0-1] value. To get the percentage → Accuracy * 100 = Accuracy %
Detected Rectangle for Product A has 99.99% confidence
Surface Detection - JSON Data
Detected Rectangle Data - XY Coordinates, Dimension, Area, ID, Color, Class Name
Heatmap Data - Dimension, Color, ID & Class Name
Detector - JSON Data
Detected Rectangle Data - Coordinates, Dimension, ID, Class Name, Confidence Percentage
Accuracy is represented as [0-1] value. To get the percentage → Accuracy * 100 = Accuracy %