Inspection

Inspection shows how the input image is processed for each module, where detected objects are displayed for each image, providing detailed information such as: rectangle coordinates, ID, image size, confidence percentage, etc.

Theย Context (application variable), is displayed in JSON format for each module. The data will be available in Inspection after you activate/validade a model for any module within the Flow.

Anomaly of Surface - JSON Data

Image Dimension (Pixels)

{ "globalData": null, "image": { "type": "<numpy>", "shape": [ 837, 1305, 3 ] }

Detected Rectangle Data - XY Coordinates, Dimension[px], Area[px], ID, Color, Class Name

"detectedRectangles": [ { "x": 1086, "y": 510, "width": 3, "height": 3, "area": 2, "id": 1603111484990003, "classNames": [ { "color": "#ff00ff", "color_bgr": [ 255, 0, 255 ], "id": 1603111688057, "label": "Scratch" } ....

Heatmap Data - Dimension, Color, ID & Class Name

"heatmaps": [ [ { "type": "<numpy>", "shape": [ 768, 1024, 1 ] }, { "color": "#ff0000", "color_bgr": [ 0, 0, 255 ], "id": 1, "label": "Defect" } ] ....

Classifier - JSON Data

Image Dimension [px]

{ "globalData": null, "image": { "type": "<numpy>", "shape": [ 837, 1305, 3 ] }

Detected Retangle Data - Class Names, ID & Confidence % (Accuracy)

Acurracy * 100 = Accuracy %

Detected Rectangle for Product A has 99.99% confidence

"detectedRectangles": [ { "classNames": [ { "label": "Product A", "id": 1579785458561, "accuracy": 0.9999566078186035 }, { "label": "Product B", "id": 1563879945497, "accuracy": 0.000023665264961891808 }, { "label": "Product C", "id": 1579785458074, "accuracy": 0.00001757865356921684 }, { "label": "Missing", "id": 1579785459058, "accuracy": 0.0000020917841538903303 }, { "label": "Product D", "id": 1563879965635, "accuracy": 2.7898661159042604e-8 } ]

Surface Detection - JSON Data

Image Dimension (Pixels)

{ "globalData": null, "image": { "type": "<numpy>", "shape": [ 837, 1305, 3 ] }

Detected Rectangle Data - XY Coordinates, Dimension, Area, ID, Color, Class Name

"detectedRectangles": [ { "x": 35, "y": 681, "width": 30, "height": 33, "area": 718.5, "id": 1603111484990000, "classNames": [ { "color": "#ff0000", "color_bgr": [ 0, 0, 255 ], "id": 1, "label": "Defect" }

Heatmap Data - Dimension, Color, ID & Class Name

"heatmaps": [ [ { "type": "<numpy>", "shape": [ 837, 1305, 1 ] }, { "color": "#ff0000", "color_bgr": [ 0, 0, 255 ], "id": 1, "label": "Defect" }

Detector - JSON Data

Image Dimension (Pixels)

{ "globalData": null, "image": { "type": "<numpy>", "shape": [ 837, 1305, 3 ] }

Detected Rectangle Data - Coordinates, Dimension, ID, Class Name, Confidence Percentage

Acurracy * 100 = Accuracy %

Detected Rectangle for ''id=โ€ฆ1000'' has 99.18% confidence

"detectedRectangles": [ { "x": 456, "y": 361, "width": 165, "height": 163, "id": 1604385708721000, "confidence": 0.9918909072875977, "classNames": [ { "id": 1604385716945, "label": "Screw02", "confidence": 0.9918909072875977 } ] }, ...

OCR - JSON Data

Image Dimension (Pixels)

{ "globalData": null, "image": { "type": "<numpy>", "shape": [ 837, 1305, 3 ] }

Detected Rectangle Info - ID, Dimension, OCR Text, Confidence Percentage

Acurracy * 100 = Accuracy %

Detected Rectangle for ''text=Today'' has 99.71% confidence

"ocr": [ { "id": 1615382086440, "width": 109, "height": 38, "x": 169.11210023365456, "y": 420.09002285870446, "text": "Today", "confidence": 0.997153103351593 ...

ย