Inspection
Inspection shows how the input image is processed for each module, where detected objects are displayed for each image, providing detailed information such as: rectangle coordinates, ID, image size, confidence percentage, etc.
Theย Context (application variable), is displayed in JSON format for each module. The data will be available in Inspection after you activate/validade a model for any module within the Flow.
Anomaly of Surface - JSON Data
Image Dimension (Pixels)
{
"globalData": null,
"image": {
"type": "<numpy>",
"shape": [
837,
1305,
3
]
}
Detected Rectangle Data - XY Coordinates, Dimension[px], Area[px], ID, Color, Class Name
"detectedRectangles": [
{
"x": 1086,
"y": 510,
"width": 3,
"height": 3,
"area": 2,
"id": 1603111484990003,
"classNames": [
{
"color": "#ff00ff",
"color_bgr": [
255,
0,
255
],
"id": 1603111688057,
"label": "Scratch"
}
....
Heatmap Data - Dimension, Color, ID & Class Name
"heatmaps": [
[
{
"type": "<numpy>",
"shape": [
768,
1024,
1
]
},
{
"color": "#ff0000",
"color_bgr": [
0,
0,
255
],
"id": 1,
"label": "Defect"
}
]
....
Classifier - JSON Data
Image Dimension [px]
{
"globalData": null,
"image": {
"type": "<numpy>",
"shape": [
837,
1305,
3
]
}
Detected Retangle Data - Class Names, ID & Confidence % (Accuracy)
Acurracy * 100 = Accuracy %
Detected Rectangle for Product A has 99.99% confidence
"detectedRectangles": [
{
"classNames": [
{
"label": "Product A",
"id": 1579785458561,
"accuracy": 0.9999566078186035
},
{
"label": "Product B",
"id": 1563879945497,
"accuracy": 0.000023665264961891808
},
{
"label": "Product C",
"id": 1579785458074,
"accuracy": 0.00001757865356921684
},
{
"label": "Missing",
"id": 1579785459058,
"accuracy": 0.0000020917841538903303
},
{
"label": "Product D",
"id": 1563879965635,
"accuracy": 2.7898661159042604e-8
}
]
Surface Detection - JSON Data
Image Dimension (Pixels)
{
"globalData": null,
"image": {
"type": "<numpy>",
"shape": [
837,
1305,
3
]
}
Detected Rectangle Data - XY Coordinates, Dimension, Area, ID, Color, Class Name
"detectedRectangles": [
{
"x": 35,
"y": 681,
"width": 30,
"height": 33,
"area": 718.5,
"id": 1603111484990000,
"classNames": [
{
"color": "#ff0000",
"color_bgr": [
0,
0,
255
],
"id": 1,
"label": "Defect"
}
Heatmap Data - Dimension, Color, ID & Class Name
"heatmaps": [
[
{
"type": "<numpy>",
"shape": [
837,
1305,
1
]
},
{
"color": "#ff0000",
"color_bgr": [
0,
0,
255
],
"id": 1,
"label": "Defect"
}
Detector - JSON Data
Image Dimension (Pixels)
{
"globalData": null,
"image": {
"type": "<numpy>",
"shape": [
837,
1305,
3
]
}
Detected Rectangle Data - Coordinates, Dimension, ID, Class Name, Confidence Percentage
Acurracy * 100 = Accuracy %
Detected Rectangle for ''id=โฆ1000
'' has 99.18% confidence
"detectedRectangles": [
{
"x": 456,
"y": 361,
"width": 165,
"height": 163,
"id": 1604385708721000,
"confidence": 0.9918909072875977,
"classNames": [
{
"id": 1604385716945,
"label": "Screw02",
"confidence": 0.9918909072875977
}
]
},
...
OCR - JSON Data
Image Dimension (Pixels)
{
"globalData": null,
"image": {
"type": "<numpy>",
"shape": [
837,
1305,
3
]
}
Detected Rectangle Info - ID, Dimension, OCR Text, Confidence Percentage
Acurracy * 100 = Accuracy %
Detected Rectangle for ''text=Today'' has 99.71% confidence
"ocr": [
{
"id": 1615382086440,
"width": 109,
"height": 38,
"x": 169.11210023365456,
"y": 420.09002285870446,
"text": "Today",
"confidence": 0.997153103351593
...
ย